Mythen über Gesundheit einer Elektroauto Batterie. (SOH)

Über die Jahre habe ich viele YouTube Videos gesehen was empfohlen wird um eine lange Lebensdauer einer Batterie zu gewährleisten. Leider sind viele Tipps davon nachweislich falsch, wie zum Beispiel das möglichst langsame Laden. Eine Ladung mit 3kW bringt die Batterie nicht auf ihre Lieblingstemperatur (30°C – 40°C). zudem findet eine sehr/unnötig lange chemische Reaktion statt, was sie eigentlich gar nicht so richtig mag. Über die besten Tipps beim Laden habe ich hier schon geschrieben.

Zitat Professor Jeff Dahn / Waterloo Institute for Nanotechnology: “Low Charge rates also lead to battery degradation.”

Kompetenz

Was befähigt mich überhaupt Dinge die Tausend Mal bei YouTube&Co behauptet wurden anzuzweifeln? Erstmal bin ich vom Beruf Elektroniker: Ich kenne den Unterschied von NCA (Lithium Nickel Cobalt Aluminium Oxid), NMC (Lithium Nickel Mangan Cobalt Oxid) und LFP/LiFePO4 (Lithium Eisen Phosphat). Ich kann mit den Begriff Nickelreiche Akkus was anfangen und kenne auch die Unterschiede von NMC 111, NMC 622 und NMC 811. Viele, die sehr selbstbewusst darüber reden, haben zum Teil diese Begriffe noch nie gehört. Für mich war es ein (kleiner) Teil meiner Ausbildung.

Was aber maßgeblich zu meiner Erfahrung zählt sind die mir zur Verfügung stehenden Daten von ca. 6000 Tesla Fahrzeugen (Stand Okt. 2023) über den Teslalogger. Als Entwickler vom Teslalogger und Mitentwickler von ScanMyTesla habe ich einen sehr großen, wenn nicht vielleicht sogar den größten Datenbestand über Batterien von Tesla außer Tesla selbst.

Ich kann in den Daten sehen, was eine sehr hohe Ladegeschwindigkeit ausmacht, welche Rolle ein Zelldrift spielt, was eine Degradation über die Lebensdauer der Batterie aussagt und viele weitere Dinge.

Degradation

Der mit Abstand größte Mythos ist die Degradation / Restkapazität. Die meisten glauben, dass, wenn die Kapazität bei 50% liegt oder 100km oder welchen Wert auch immer, dann die Batterie “kaputt” sei.

Viele YouTuber, Gutachter und sogar Automobilclubs lesen die Batterie aus und sagen: 94% Restkapazität nach 3 Jahren. Was heißt das? Das Einzige was man dazu sagen kann: Das Fahrzeug fährt offensichtlich noch. Wie lange noch? Keine Ahnung.

Ich habe z.B. ein Tesla Model S85 mit 640.000km auf der Uhr mit einer Restkapazität von 84%. Zum Vergleich: ich hatte hier viele S85 mit 80% Restkapazität und unter 150.000km die hervorragend gefahren sind. Jetzt würden bestimmt viele Profis sagen: die Batterie mit 640.000km läuft bestimmt nochmal so lange. Ganz im Gegenteil: Diese Batterie hatte einen so hohen Innenwiderstand, dass der Besitzer viele Male bei 80km Restreichweite liegen geblieben ist. Supercharging von 10%-90% hat zwei Stunden gedauert und außer ganz vorsichtig in 100km Umkreis fahren war mit dieser Batterie nicht wirklich möglich (Ich habe über diesen Fall hier ausführlich berichtet). Wie man sieht ist der Innenwiderstand der Batterie viel wichtiger als die Degradation / Restkapazität. Ja, es gibt auch Negativbeispiele wie z.B. den Nissan Leaf, der wirklich viel Kapazität verloren hat und dann der Innenwiderstand keine Rolle mehr spielt, da er von Haus aus wenig Reichweite hatte und irgendwann mal nur noch 100km Reichweite durch Degradation hat.

Wie man aber im sogenannten “Batteriezertifikat” oben sehen kann, wird über den Innenwiderstand keine Silbe verschwendet und es ist deshalb nicht mal das Papier wert, auf dem es ausgedruckt ist. Und selbst wenn er in Zukunft aufgeführt wird, muss der Zertifikataussteller ausführen, welche Werte gut und welche schlecht sind. Dafür müsste der Aussteller wissen, ab welchen Widerstandswert das Auto nicht mehr fährt. Dazu müssten alle Anbieter eine Datenbank mit kaputten Batterien und deren Innenwiderständen führen – und genau das haben sie nicht. Da ich Daten von über 6000 Teslas habe, weiß ich, welches Modell bei welchem Widerstandswert unbrauchbar ist. Für das Model 3 / Model Y habe selbst ich keine genauen Werte, obwohl ich auf viele Model 3 ab 2017 Zugriff habe, als bei uns noch nicht mal die Model 3 ausgeliefert wurden. Ich habe zwar einen groben Wert, aber ich muss noch warten, bis ich ausreichend Daten von kaputten Model 3 gesammelt habe. Eins dürfte aber klar sein: durch den hohen Nickelgehalt werden wir so hohe Kilometerleistungen wie beim Model S nicht oft sehen und ich vermute, dass die Model 3 eher wegrosten werden als dass die Batterie kaputt geht. Zumindest, wenn man weniger als 50.000km im Jahr fährt….

DC – AC Anteil

Oft hört man: Wenn die Batterie einen niedrigen DC Anteil hat, also wenig Schnellladung erlebt hat, dann ist das gut. Schnellladen ist ja angeblich schlecht. Nein, das ist ein Mythos. Ich habe in meiner Datenbank viele Fahrzeuge mit 300.000km auf der Uhr und nahezu 100% Supercharging. Viele, die keinen eigenen Parkplatz in einer Großstadt und somit keine eigene Wallbox haben, haben oft einen extrem hohen Supercharging-Anteil. Wenn diese Fahrzeuge keine hohen Belastungen hinter sich hatten, keine 100% über viele Stunden, keine hohen Geschwindigkeiten, dann werden die Fahrzeuge noch lange fahren. Aber auch das kann man wieder am Innenwiderstand der Batterie beurteilen.

Zum selben Ergebnis kam auch die Studie von Recurrentauto, die 12.500 Model 3 und Model Y ausgewertet haben die entweder über 90% schnell laden oder 90% langsam laden. Sie konnten keinen Signifikaten Unterschied erkennen.

Zelldrift

Ein Zelldrift ist tatsächlich sehr wichtig. Bei 60mV Zelldrift (Model S/X) und wenn das Auto steht, ist mindestens ein Modul am Ende. Manche Batteriezertifikate enthalten tatsächlich einen Wert über den Zelldrift und manche bewerten ihn dann auch. Dann heißt es «5mV Zelldrift ist ein guter Wert». Ja, falsch ist das nicht, aber erstmal sagt er nichts aus. Wenn das Fahrzeug lange stand und lange genug Zeit hatte um ihn durch den Balancer auszugleichen, dann kann es sogar sein, dass ein Modul kaputt ist, aber der Balancer ihm gute Werte zertifiziert. Hier muss man einen längeren Belastungstest machen um aussagekräftige Werte zu liefern. Wurde die Batterie in 5 Minuten ausgelesen, dann ist der Wert in den meisten Fällen wertlos.

Durchschnittliche Lebenserwartung

Lithium basierte Batterien haben eine Zyklische- und eine Kalendarische Lebensdauer. Man kann sie je nach Zellchemie mehr oder weniger oft komplett be- und entladen. Von einem Vollzyklus spricht man entweder einmal von 100% auf 0% und wieder 100% oder zweimal 100% auf 50% und wieder zurück auf 100% .

Die Kalendarische Alterung bezieht sich auf das Alter der Batterie. Mit anderen Worten: selbst wenn man das Fahrzeug nicht bewegt, geht die Batterie langsam kaputt. Einen 50 Jahre alten Tesla mit der ersten Batterie werden wir wohl nicht erleben.

S85

Bei Model S85 Batterien hat man durchschnittlich 1200 Vollzyklen. Das sind je nach Fahrweise ca 350.000km. Ja, es gibt viele die schon 450.000km draufhaben, aber es gibt auch viele Kaputte mit 250.000km.

S75 / S90 / S100

S75 / S90 / S100 Batterien haben eine andere Zellchemie und sind deutlich besser: die schaffen durchschnittlich über 1500 Vollzyklen.

Model X

Model X haben prinzipiell dieselben Akkus, da sie aber durch den höheren Verbrauch stärker belastet werden, sinkt die durchschnittliche Lebenserwartung. Allerdings nicht drastisch, 1000 Vollzyklen sind aber locker drin.

Model 3/Y (NCA)

Model 3 Batterien haben ziemlich genau gar nichts mit Model S Batterien gemeinsam, außer vielleicht, dass auch Lithium verwendet wird. Aus Kostengründen hat Tesla den Kobalt gehalt stark reduziert und dafür den Nickelanteil erhöht. Das sind sogenannte Nickel Rich / Nickelreiche Batterien, die bekannt dafür sind, vorzeitig zu altern und auch weniger Vollzyklen zu schaffen. Tesla hat darauf reagiert und die Garantie von Unbeschränkter Fahrleistung auf 192.000km für Long Range Fahrzeuge und 160.000km für Standard Range Fahrzeuge limitiert. Ich habe einige Fahrzeuge über 200.000km ohne Probleme in meiner Datenbank. Selbst wenn man nur 1000 Vollzyklen annimmt, wären trotzdem mehr als 300.000km denkbar. Man darf nicht vergessen: durch den geringeren Verbrauch werden die Zellen auch weniger stark belastet, so dass die Akkus mehr geschont werden.

Model 3 (LFP)

Lithium Eisenphosphat Akkus sind bekannt für extrem viele mögliche Zyklen. 5000 Zyklen sind bei schonendem Gebrauch keine Seltenheit. Auch Elon Musk wirbt mit 1,6 Millionen km. Wie passt es zusammen, dass es trotzdem nur eine Garantie bis 160.000km gibt? Die 1,6 Millionen km wären ca 5000 Vollzyklen, aber: LFP Akkus mögen keine Kälte. Bei BYD erlischt sogar die Garantie für Heimspeicher, wenn man sie unter -5°C betreibt. Deswegen werden die Batterien vorgewärmt, um einer vorzeitigen Alterung entgegenzuwirken. Wie viel “Schaden” die Batterie bei jedem Einsatz unter -5°C nimmt, wissen wir nicht. Ich selbst habe noch keine einzige LFP Batterie in meiner Datenbank, die durch Vollzyklen kaputt gegangen ist. Zumindest sind viele mit 150.000km dabei. Ich kann mir gut vorstellen, dass so eine Batterie in Kalifornien oder Florida über eine Million km schafft, aber in Norwegen oder Schweden mit Sicherheit nicht. Aber um mal ganz ehrlich zu sein: Das Model 3 ist das erste Blechfahrzeug von Tesla. Lancia hat viele Jahre Erfahrung und deren Fahrzeuge haben Rostlöcher, bevor sie 10 Jahre alt sind. Mit ziemlich großer Sicherheit sind Teslas Model 3 nicht besser. Insofern spielt es keine Rolle, ob die Batterie nur 300.000km oder 1,6 Millionen km aushält.

Tesla Model 3 2018 aus Kanada

Andere Hersteller

Da ich für andere Hersteller keine Massendaten habe, lasse ich es lieber, darüber zu schreiben. Die Grundsätzlichen Dinge, die ich oben beschrieben habe, gelten aber auch hier.

Ich möchte trotzdem zwei Beispiele nennen. Nissan Leaf hatten eine hohe Degradation, so dass man sehen kann, dass es auch schlechte Batterien geben kann.

Hyundai Ioniq 28kWh: Dieses Fahrzeug hat meiner Meinung nach eine der besten Batterien auf dem Markt. Die Batterie hatte keine aktive Kühlung und kein Vorheizen, trotzdem hat sie mit 2,5C geladen und das von 5% – 90%. (2.5C bedeutet, dass mit der 2.5-fachen Leistung der Kapazität geladen werden kann. Bei 28kWh entspricht das also einer maximalen Ladeleistung von 70kW). In 18 Minuten war die Batterie voll. Ein Tesla Model 3 kann davon nur träumen. Alle waren damals derselben Meinung: der Ioniq wird kaum 100.000km schaffen, dann ist die Batterie fertig… Nein, mittlerweile fahren viele Ioniq mit über 300.000 km rum. Bei der kleinen Batterie sind das ca 1700 Vollzyklen. Für mich ist das Stand 2023 die Wunderbatterie. Man möge sich nicht vorstellen, was die Batterie leisten würde, wenn Hyundai sie mit einer Flüssigkühlung ausgestattet hätte…. Vielleicht 10 Minuten zum Vollladen?

Wie schone ich meine Batterie?

Akkutemperatur

Von Wissenschaftlichen Studien wissen wir, dass die Temperatur einen großen Faktor für die Lebensdauer hat. Ein Tesla aus Süditalien wird wohl länger fahren als dasselbe Modell aus Norwegen. Ein Garagenwagen ist auch besser als einer, der bei tiefen Minusgraden draußen steht. Fahren wir mit eiskalter Batterie zum Supercharger, dann ärgern wir uns manchmal über nur 30kW Ladeleistung. Aber genau damit wird die Batterie geschont! Wissenschaftliche Lektüre sagt ganz klar: ob man die Batterie lädt oder entlädt, spielt erstmal keine Rolle. Dann wandern eben die Ionen von der Anode zur Kathode oder umgekehrt. Aber was heißt das für uns? Ist die Batterie eiskalt, dann sollten wir sie nicht stärker als mit 30kW laden, aber eben auch nicht entladen. Jetzt stellen wir uns mal vor, das Batteriemanagement System (BMS) würde uns bei kalter Batterie verbieten, mit mehr als 30kW (41PS) zu beschleunigen. So ein Fahrzeug würde niemand kaufen. Also sagt der Hersteller: wir hoffen auf die Vernunft des Fahrers, dass er bei kaltem Akku nicht mit 500PS durch die Gegend heizt. Möchte man seinen Akku schonen, dann bitte ganz langsam fahren, während die Batterie noch kalt ist. Erkennbar ist dies an der eingeschränkten Rekuperation.

Range Mode

Model S/X Fahrer kennen die Funktion “Range Mode” – damit wird u.a. die Akkuheizung abgeschaltet. Das schadet der Batterie allerdings sehr! Leider sehe ich mit der Tesla API nicht, wann Fahrzeuge den Range Mode verwenden und was für eine Auswirkung das nachweislich hat, aber wissenschaftliche Studien sind sich da einig.

Starke Beschleunigung / schnelles Fahren

Starke Beschleunigung und schnelles Fahren führt dazu, dass die Zellen schnell heiß werden und wie wir vorher gelernt haben ist das nicht gut. Ich hatte vor kurzem jemand zum Batterie auslesen mit knapp 300.000km und fast 100% Supercharging vor Ort. Trotzdem hatte er einen sehr guten Innenwiderstand. Am Verbrauch beim Auslesen konnte ich allerdings sehen, dass er extrem sparsam gefahren ist und vermutlich auch sehr vorausschauend, da er eine niedrige Rekuperation hatte. Mehr als 120km/h hat sein Fahrzeug noch nie gesehen. Ich vermute: auch «Vollgas» noch nie. Ich kann mir sehr gut vorstellen, dass dieses Fahrzeug locker 500.000km schafft.

Laden im Winter

Im Winter sollte man möglichst mindestens eine halbe Stunde vor der Fahrt das Auto laden, so dass durch den Ladevorgang die Batterie (kostenlos) schonend warm wird. Das steigt die Lebensdauer und senkt den Verbrauch. Ich stecke abends bei mir das Ladekabel ein und mache eine geplante Ladung ab 7 Uhr. Wenn ich dann vor 8 Uhr losfahre, habe ich meist eine warme Batterie.

Hohe Ladestände vermeiden

100% Ladestand wenn möglich vermeiden. Wenn man das aber doch braucht, dann sollte man so schnell wie möglich losfahren, sobald dieser Ladestand erreicht ist: Am besten nicht länger als eine Stunde so stehen lassen. Grundsätzlich sollte man die Batterie maximal auf 90% und, Model 3 mit Panasonic Batterie maximal 80% laden. LFP Akkus würde ich auch nur bis 90% laden und einmal im Monat bei 100% über Nacht stehen lassen, damit ein Top Balancing durchgeführt werden kann.

Nicht komplett leer fahren

Auch wenn das zum Wettbewerb geworden zu sein scheint ist, wie weit man unter 0% fahren kann, würde ich davon Abstand nehmen. Damit schadet man nur der Batterie. Kurze Ladehübe, also rechtzeitig laden ist nachweislich am schonendsten.

Batterie geht vorzeitig kaputt

Ich kann beim Auslesen recht gut beurteilen ob die Batterie in den nächsten 50.000km oder in den nächsten 200.000km kaputt gehen wird, weil ich eine große Datenbank mit Innenwiderständen habe und auch den Zelldrift nach einer Belastung gut vergleichen kann. Dennoch kann ein Akku morgen kaputt gehen, obwohl ich vielleicht vorher behauptet habe, dass er locker noch 100.000 km schaffen müsste. Habe ich doch genauso wenig Ahnung wie die anderen, die einfach nur die Degradation von ScanMy-Tesla ablesen? Nein.

Wasserschaden

Die meisten Defekte an den Batterien sind Wasserschäden. Jetzt könnte man sagen: Hää, Elon Musk behauptet doch man könnte eine kurze Zeit mit einem Tesla schwimmen ohne dass der Akku kaputt geht. Ja, das ist richtig, aber nur, wenn die Dichtung vom Akku intakt ist. Die Dichtung der Batterie und die Entlüftungsventile werden mit der Zeit porös und sind dann nicht mehr dicht. Kondenswasser und Regen kann in die Batterie eindringen und vor allem die Platine und manchmal einzelne Zellen beschädigen. Es gibt tatsächlich einen stillen Rückruf von Tesla und dabei werden diese Dichtungen kostenlos ersetzt. Gehört man zu den Glücklichen, die noch nie ein Problem mit ihren Tesla hatten und noch nie einen Service gebucht haben, wird früher oder später die Dichtung kaputt sein. Geht die Batterie deswegen nach der Garantie kaputt, dann ist das extrem Ärgerlich und sehr teuer.

Mein Tipp: Bei Tesla nachfragen, ob die Dichtung schon getauscht wurde. Wenn nicht, dann würde ich anfragen, ob sie sich das anschauen könnten oder ob es erfahrungsgemäß jetzt notwendig wäre.

Nach der Garantie: nicht zu Tesla damit. Es gibt einige freie Werkstätten, die das für ein Bruchteil der Kosten reparieren. Da wird dann meist nur eine Platine getauscht.

Den “Wasserstand” in der Batterie kann man leider mit ScanMyTesla nicht auslesen, so dass man so einen Fehler nicht voraussagen kann.

Modul defekt

Ist die Kapazität / der Innenwiderstand eines Modules deutlich kleiner als die der anderen Module, dann erreicht man die maximale Lade- und Entladeendspannung viel schneller, so dass irgendwann mal das BMS aufgibt und die Fehlermeldung “Maximaler Batterieladestand reduziert” bringt. Beim Auslesen kann man, wenn man einen Belastungstest macht, oft ein Modul erkennen, dass in naher Zukunft kaputt gehen wird. Leider kommt sowas auch ganz spontan, indem mehrere Zellen durch einen Kurzschluss vom Akku getrennt werden. Jede einzelne Zelle ist mit einer kleinen Sicherung verbunden, damit es bei einem Kurzschluss in einer Zelle nicht zum Brand kommt. So etwas kann man nicht durch Auslesen vorhersagen.

Mein Tipp: Nach der Garantie auf keinen Fall zu Tesla. Auch da kann man vergleichsweise günstig ein Modul tauschen lassen bei Firmen, die sich darauf spezialisiert haben.

Zellsicherung

Batterie hat die Lebensdauer überschritten

Hat man mehr als 400.000km auf der Uhr und alle Module sind hochohmig, dann erreicht man meist die Endgeschwindigkeit gar nicht mehr. Die Ladeleistung bricht nach wenigen Sekunden sehr stark ein und ein Supercharging von 10% auf 80% dauert 1,5 Stunden und mehr. Da hilft dann ein Modultausch nicht mehr, dann sind alle Module am Ende ihrer Lebensdauer. Die Module kann man mit Sicherheit noch viele Jahre in einem PV Heimspeicher verwenden, aber der Betrieb in einem Fahrzeug ist nicht mehr sinnvoll möglich. Da kann aber eine gebrauchte Batterie helfen. In eine 85er Batterie würde ich persönlich kein Geld investieren. Eine 90er Batterie ist deutlich besser. Aber ob sich diese Investition rechnet muss jeder für sich entscheiden. Mit großer Sicherheit ist bei der Fahrleistung das ganze Fahrwerk kaputt und viele andere Dinge sind dem Tod nahe…

Anzeichen einer kaputten Batterie

Was sind die ersten Anzeichen einer kaputten Batterie? Erreicht das Fahrzeug nicht mehr die Endgeschwindigkeit, dann ist das ein Anzeichen eines hohen Innenwiderstandes. Natürlich kann Tesla auch etwas an der Firmware gedreht haben um den Akku zu schützen.

Man kann nur in Deutschland testen, mit ScanMyTesla beim Beschleunigen nachzuschauen, wie viel Leistung maximal aus der Batterie gezogen wird, wenn sie warm ist und mindestens 80% SOC hat.

Ich habe zwar behauptet, dass die Degradation zumindest bei Tesla keine große Rolle spielt und ich in den seltensten Fällen eine Korrelation zur kaputten Batterie beobachten konnte, aber schaden kann es nicht, das zu beobachten. Dazu lädt man sein Fahrzeug von 10% bis 100% mit 11kW auf und vergleicht die Werte mit den Werten von https://teslalogger.de/degradation.php. Gibt es eine eine große Diskrepanz, dann sollte sich das jemand anschauen, der was davon versteht.

Lässt sich das Fahrzeug nicht mehr auf 100% laden, dann stimmt was nicht. Erreichen alle Module bis auf eins die Ladeschlussspannung, dann sollte man das über die nächsten Wochen beobachten.

Schaltet sich das Fahrzeug ab, obwohl man über 5% Restreichweite hat, dann sollte man auch da nachschauen.

Wie gesagt, das sind nur Anzeichen und ich hatte schon einige Fahrzeuge, die sich nach ein paar Wochen “erholt” haben.

Ausleseservice

Ich biete einen Ausleseservice mit Bewertung der Batterie an. Ruft mich einfach an für einen Termin. (In der Nähe von Ulm)

Batteriereparatur

Wir bieten auch eine kostengünstige Akku-Reparatur an. Für eine Terminabsprache bitte Michael (in der Nähe von Weimar) anrufen.

Reaktionen auf mein Bericht

Ich möchte auch auf Reaktionen reagieren, die nach meinem Blog Artikel aufgetaucht sind.

Innenwiderstand ist mir egal

Es gibt einige Reaktionen, die sagen: Innenwiderstand ist mir egal, solange mein Fahrzeug die maximale Ladegeschwindigkeit schafft. Für mich zählt alleine die Degradation, denn die entscheidet, wie weit ich komme.

Ja, auf den ersten Blick, würde ich das auch behaupten. Aber auf den zweiten Blick sieht das anders aus: Je höher der Innenwiderstand ist, desto wärmer wird der Akku. Je wärmer er wird, desto mehr Energie verliert er beim Fahren / Laden. Ich hatte hier ein Model S85 mit 350.000km – der hat die 120kW am Supercharger zwar geschafft, aber der hohe Innenwiderstand hat die Batterie binnen Sekunden in die Ladeschlussspannung gebracht und 10%-80% laden hat über 90 Minuten gedauert… Gleichzeitig ist sein Verbrauch deutlich geschrieben, da ein großer Teil der Energie durch den hohen Innenwiderstand verbrannt wurde. Ein Fahren auf Langstrecke war damit auf jeden fall eine Qual.

DC-AC Verhältnis ist doch wichtig!

Ein bekannter Youtuber hat nach seinen eigenen Aussagen tausende Fahrzeuge ausgelesen und sein Bild ist ganz klar: DC-AC Verhältnis ist wichtig. Ja was stimmt denn jetzt? Wie ich schon oben geschrieben habe, sind sehr viele Faktoren die sich auf Parameter wie Innenwiderstand und Degradation auswirken. Aber: wenn er mit ScanMyTesla oder was auch immer Ausliest, dann ist das eine Momentaufnahme. Die Anzeige Degradation in % geht nur von einem Theoretischen Maximum aus. Meine Daten fangen aber oft von Tag 1 an. Schauen wir uns an, wie z.B. ein Model 3 LR ausgeliefert wird, dann ist die Streuung zwischen 471km und 510km Typical Range. Mit anderen Worten: ohne einen einzigen Meter gefahren zu sein, haben wir hier schon eine “Degradation” von 8%. Ich kann mir kaum vorstellen, dass er so viele Fahrzeuge ausliest direkt bei der Auslieferung und dann Monatlich wieder. Ich habe lückenlose Daten von 361 Model 3 LR von der Auslieferung bin zum hohen Alter.

Wenn du meinen Blog unterstützen möchtest, dann würde ich mich über eine kleine Spende freuen:
Verwende meinen Weiterempfehlungs-Link zum Kauf eines Tesla-Produktes, um eine Gutschrift zu erhalten, die z.B. gegen kostenlose Supercharger-km, Fanartikel oder Zubehör eingelöst werden kann.: http://ts.la/erna627722

8 Gedanken zu „Mythen über Gesundheit einer Elektroauto Batterie. (SOH)“

  1. Hey , wirklich toller Beitrag!
    Eine Frage habe ich allerdings , ich fahre ein Model Y 2023 mit LFP. Hier gibt Tesla als „Ladetipp“ vor den Akku immer auf 100% zu laden. Um die Hochleistung der Batterie zu gewähren.
    Wie passt das zu ihrer Aussage das sie LFP‘s trotzdem nur zu 90% laden würden. Ich bin mir nun ein bisschen unschlüssig welche nun die Akku schonende Variante ist. Beziehungsweise welche Nachteile ich hätte wenn der Akku nur auf 90% geladen werden würde.
    Viele Grüße Michel

    1. Da die Spannungen bei LiFePO4 (LFP) Akkus über einen großen SOH Bereich sehr nah beieinander sind, kann nicht wie bei NCA / NMC jederzeit das Balancing durchgeführt werden. Zumindest nicht zuverlässig. Zellen die von der Kapazität zueinander nicht passen rächen sich spätestens beim Supercharger, weil man viel früher die Ladeschlussspannung erreicht. Je nachdem wie gut die Zellen gematcht wurden, muss man nie auf 100% laden oder regelmäßig. Das laden auf 100% schadet aber trotzdem. Aber wie ich schon im Artikel geschrieben habe: wie viel schadet es? Dass wir keine 1,6 Mio km schaffen werden sollte klar sein. Aber sinkt es dann auf 200.000km? Vermutlich nicht. PV Speicher werden oft nur auf 95% geladen und nur hin und wieder auf 100%. Da ist es aber sehr wichtig, dass er möglichst lange lebt…
      Ich würde ein mal im Monat auf 100% laden. Wenn du keine Probleme beim Supercharger hast, dann ist es gut. Ansonsten 2 mal oder mehr. Das ist eben von Fahrzeug zu Fahrzeug anders und kann sich auch nach einem Jahr ändern. Du kannst ja mal nach einem Monat deine Erfahrung posten.

  2. Dieser Beitrag ist pures Gold wert!

    Danke für die Mühe dem Thema derart gründlich und wissenschaftlich beleg- und reprodizierbar nachzugehen!

    Ein Datenbank mit scheinbar allen relevanten Daten!
    Genial!

    BITTE stellen Sie diese Daten der Allgemeinheit zur Verfügung; Stichwort: git hub.

    Ich bin mir 100% sicher, dass sich eine Community finden wird, die Ihre detaillierten Untersuchungen verifizieren, erweitern und fortführen wird.

    Ggf. käme dann jemand sogar auf die Idee eine generische Hardware
    (z.B. auf Basis eines ESP32)
    zu entwickeln,
    die in den CAN-Bus(?) der E-Autos gesteckt wird,
    alle notwendigen Daten ausliest,
    an eine (.NET MAUI) App sendet
    und diese dann an (einen) Server weiterleitet,
    der die Daten in die Datenbank einfügt. 😉

  3. Ich finde diesen Beitrag spitze. Und würde mich natürlich freuen, wenn die Daten auch für Forschungen an Unis bereit stehen würden.

    Grundsätzlich sehe ich derzeit viele Ansätze und Ideen zu den diversen Akkutypen. Teslas Ansatz ist Kosten in der Produktion sparen. Ich würde auch behaupten, das in der Software ein Akkuschonen gemacht werden könnte. zB 100% Laden aller 2 Wochen per autom. Settings. Und dann auch das entladen zurück auf 80% per Heizen/Kühlen.

    Zu einem wissenschaftlichen Wert fehlt dem Beitrag noch eine wissenschaftliche veröffentlichung, Peerreview bzw. dem Versuch die Ergebnisse zu falsifizieren.

  4. Der Beitrag hat mir auch sehr gut gefallen, lediglich einer der ersten Sätze nicht, Zitat “Leider sind viele Tipps davon nachweislich falsch, wie zum Beispiel das möglichst langsame Laden. Eine Ladung mit 3kW bringt die Batterie nicht auf ihre Lieblingstemperatur (30°C – 40°C). zudem findet eine sehr/unnötig lange chemische Reaktion statt, was sie eigentlich gar nicht so richtig mag. ”
    -> auch mit 11kW wird die Batterie im Winter kaum wärmer als 10°C !
    >30°C erreicht sie im Winter nur durch aktives heizen!

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert